

MATHEMATICS HIGHER LEVEL PAPER 1

Wednesday	5	May	2010	(afternoon))
-----------	---	-----	------	-------------	---

0 0

Candidate session number

2 hours

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

[3 marks]

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1	[Maximum]	mark.	57

Determine c

A continuous random variable X has the probability density function f given by

$$f(x) = \begin{cases} c(x - x^2), & 0 \le x \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

(u)	Betermine C.	[5 mans]
(b)	Find $E(X)$.	[2 marks]

2. IMaximum mark: 0	2.	[Maximum	mark:	6
----------------------------	----	----------	-------	---

(a)	Express the quadratic $3x^2$	-6x+5 in the form	$a(x+b)^2+c$, where	$a, b, c \in \mathbb{Z}$.	[3 marks]
-----	------------------------------	-------------------	----------------------	----------------------------	-----------

(b)	Describe a sequence of transformations that transforms the graph of $y = x^2$	
	to the graph of $y = 3x^2 - 6x + 5$.	[3 marks]

.....

.....

.....

.....

3. [Maximum mark: 5]

The three vectors \boldsymbol{a} , \boldsymbol{b} and \boldsymbol{c} are given by

$$a = \begin{pmatrix} 2y \\ -3x \\ 2x \end{pmatrix}, b = \begin{pmatrix} 4x \\ y \\ 3-x \end{pmatrix}, c = \begin{pmatrix} 4 \\ -7 \\ 6 \end{pmatrix} \text{ where } x, y \in \mathbb{R}.$$

(a) If a+2b-c=0, find the value of x and of y.

[3 marks]

(b) Find the exact value of |a+2b|. [2 marks]

4.	[Maximum	mark:	4]

A biased coin is weighted such that the probability of obtaining a head is $\frac{4}{7}$. The coin is tossed 6 times and X denotes the number of heads observed. Find the value of the ratio $\frac{P(X=3)}{P(X=2)}$.

5	[Махітит	mark.	71
J	I IVI AX IIII UIII	mark.	//

Consider the matrices

$$\boldsymbol{A} = \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix}, \ \boldsymbol{B} = \begin{pmatrix} 1 & 3 \\ 2 & -2 \end{pmatrix}.$$

(a)	Find BA.	[2 marks]
(b)	Calculate $\det(BA)$.	[2 marks]
(c)	Find $A(A^{-1}B + 2A^{-1})A$.	[3 marks]

6.	[Maximum	mark.	61
v.	<i>INIUXIIIIUIII</i>	mark.	OI

Maximum mark: 6]	
If x satisfies the equation $\sin\left(x + \frac{\pi}{3}\right) = 2\sin x \sin\left(\frac{\pi}{3}\right)$, show that $11\tan x = a + b\sqrt{3}$, where $a, b \in \mathbb{Z}^+$.	

7.	[Maximum	mark:	8

The function f is defined by $f(x) = e^{x^2 - 2x - 1.5}$.

(a) Find f'(x). [2 marks]

(b) You are given that $y = \frac{f(x)}{x-1}$ has a local minimum at x = a, a > 1. Find the value of a. [6 marks]

.....

8.	[Maximum	mark:	71

The normal to the curve $xe^{-y} + e^y = 1 + x$, at the point $(c, \ln c)$, has a y-intercept $c^2 + 1$.								
Determine the value of c .								

9.	[Maximum	mark:	6

Find the value of	$\int_0^1 t \ln(t+1) \mathrm{d}t .$	
		•

10. [Maximum mark: 6]

A function f is defined by $f(x) = \frac{2x-3}{x-1}$, $x \ne 1$.

(a) Find an expression for $f^{-1}(x)$.

[3 marks]

(b) Solve the equation $|f^{-1}(x)| = 1 + f^{-1}(x)$.

[3 marks]

.....

.....

.....

.....

.....

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

- **11.** [Maximum mark: 10]
 - (a) Consider the following sequence of equations.

$$1 \times 2 = \frac{1}{3} (1 \times 2 \times 3),$$

$$1 \times 2 + 2 \times 3 = \frac{1}{3} (2 \times 3 \times 4),$$

$$1 \times 2 + 2 \times 3 + 3 \times 4 = \frac{1}{3} (3 \times 4 \times 5),$$

. . . .

- (i) Formulate a conjecture for the n^{th} equation in the sequence.
- (ii) Verify your conjecture for n = 4.

[2 marks]

(b) A sequence of numbers has the n^{th} term given by $u_n = 2^n + 3$, $n \in \mathbb{Z}^+$. Bill conjectures that all members of the sequence are prime numbers. Show that Bill's conjecture is false.

[2 marks]

(c) Use mathematical induction to prove that $5 \times 7^n + 1$ is divisible by 6 for all $n \in \mathbb{Z}^+$. [6 marks]

- **12.** [Maximum mark: 19]
 - (a) Consider the vectors $\mathbf{a} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$, $\mathbf{b} = -3\mathbf{j} + 4\mathbf{k}$.
 - (i) Find the cosine of the angle between vectors \boldsymbol{a} and \boldsymbol{b} .
 - (ii) Find $\mathbf{a} \times \mathbf{b}$.
 - (iii) Hence find the Cartesian equation of the plane Π containing the vectors \boldsymbol{a} and \boldsymbol{b} and passing through the point (1, 1, -1).
 - (iv) The plane Π intersects the x-y plane in the line l. Find the area of the finite triangular region enclosed by l, the x-axis and the y-axis. [11 marks]
 - (b) Given two vectors \mathbf{p} and \mathbf{q} ,
 - (i) show that $\mathbf{p} \cdot \mathbf{p} = |\mathbf{p}|^2$;
 - (ii) hence, or otherwise, show that $|\mathbf{p}+\mathbf{q}|^2 = |\mathbf{p}|^2 + 2\mathbf{p} \cdot \mathbf{q} + |\mathbf{q}|^2$;
 - (iii) deduce that $|p+q| \le |p|+|q|$. [8 marks]

13. [Maximum mark: 16]

Consider $\omega = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$.

- (a) Show that
 - (i) $\omega^3 = 1$;
 - (ii) $1+\omega+\omega^2=0$. [5 marks]
- (b) (i) Deduce that $e^{i\theta} + e^{i\left(\theta + \frac{2\pi}{3}\right)} + e^{i\left(\theta + \frac{4\pi}{3}\right)} = 0$.
 - (ii) Illustrate this result for $\theta = \frac{\pi}{2}$ on an Argand diagram. [4 marks]
- (c) (i) Expand and simplify $F(z) = (z-1)(z-\omega)(z-\omega^2)$ where z is a complex number.
 - (ii) Solve F(z) = 7, giving your answers in terms of ω . [7 marks]
- **14.** [Maximum mark: 15]

Throughout this question x satisfies $0 \le x < \frac{\pi}{2}$.

- (a) Solve the differential equation $\sec^2 x \frac{dy}{dx} = -y^2$, where y = 1 when x = 0. Give your answer in the form y = f(x).
- (b) (i) Prove that $1 \le \sec x \le 1 + \tan x$.
 - (ii) Deduce that $\frac{\pi}{4} \le \int_0^{\frac{\pi}{4}} \sec x \, dx \le \frac{\pi}{4} + \frac{1}{2} \ln 2$. [8 marks]